Abstract

Nearly monocyclic terahertz waves are used for investigating elementary excitations and for controlling electronic states in solids. They are usually generated via second-order optical nonlinearity by injecting a femtosecond laser pulse into a nonlinear optical crystal. In this framework, however, it is difficult to control phase and frequency of terahertz waves. Here, we show that in a one-dimensional Mott insulator of a nickel-bromine chain compound a terahertz wave is generated with high efficiency via strong electron modulations due to quantum interference between odd-parity and even-parity excitons produced by two-color femtosecond pulses. Using this method, one can control all of the phase, frequency, and amplitude of terahertz waves by adjusting the creation-time difference of two excitons with attosecond accuracy. This approach enables to evaluate the phase-relaxation time of excitons under strong electron correlations in Mott insulators. Moreover, phase- and frequency-controlled terahertz pulses are beneficial for coherent electronic-state controls with nearly monocyclic terahertz waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.