Abstract

We report on a terahertz quasi-time domain spectroscopy (QTDS) system based on a low-cost continuous wave multimode diode laser. Commercially available low-temperature grown gallium arsenide (LT-GaAs) based photoconductive antennas (PCAs) with spiral and dipole configurations were used as emitter and detector, respectively. Terahertz pulses spaced at approximately 55 ps with a bandwidth of 400 GHz were obtained. Parametric measurements of the terahertz peak-to-peak intensity were performed by varying the injection current and temperature while maintaining incident laser power. The highest peak-to-peak intensity was obtained at 170mA injection current and 20° C temperature settings. The change in the THz peak-to-peak intensity is attributed to the mode hopping characteristics of the device which in turn, is dependent on injection current and temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.