Abstract

Polarimetry is a well-developed technique in radar based applications and stand-off spectroscopic analysis at optical frequencies. Extension to terahertz (THz) frequencies could provide a breakthrough in spectroscopic methods since the THz portion of the electromagnetic spectrum provides unique spectral signatures of chemicals and biological molecules, useful for filling gaps in detection and identification. Distinct advantages to a THz polarimeter include enhanced image-contrast based on differences in scattering of horizontally and vertically polarized radiation, and measurements of the dielectric response, and thereby absorption, of materials in reflection in real-time without the need of a reference measurement. To implement a prototype THz polarimeter, we have developed low profile, high efficiency metamaterial-based polarization control components at THz frequencies. Static metamaterial-based half- and quarter-wave plates operating at 0.35 THz frequencies were modeled and fabricated, and characterized using a MHz resolution, continuous-wave spectrometer operating in the 0.09 to 1.2 THz range to verify the design parameters such as operational frequency and bandwidth, insertion loss, and phase shift. The operation frequency was chosen to be in an atmospheric window (between water absorption lines) but can be designed to function at any frequency. Additional advantages of metamaterial devices include their compact size, flexibility, and fabrication ease over large areas using standard microfabrication processing. Wave plates in both the transmission and reflection mode were modeled, tested, and compared. Data analysis using Jones matrix theory showed good agreement between experimental data and simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.