Abstract

We have calculated two-dimensional plasmon energy spectra in HgTe/CdHgTe quantum wells with normal, gapless, and inverted energy spectra with different electron concentrations, taking into account spatial dispersion of electron polarizability and plasmon interaction with the optical phonons. The spectra of the absorption coefficients of two-dimensional plasmons are found. It is shown that an increase of electron concentration in a quantum well leads to a decrease in the plasmon absorption coefficient. We have calculated the probabilities to recombine via the plasmon emission for nonequilibrium holes. The threshold concentrations of the nonequilibrium holes, above which the plasmon amplification is possible, have been calculated for various electron concentrations. It is shown that the presence of equilibrium electrons can significantly reduce the threshold hole concentration required for amplification of plasmon in the terahertz wavelength region. The dependencies of threshold hole concentration on electron concentration for different quantum wells are discussed. Gain spectra of the two-dimension plasmon are calculated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.