Abstract

Sensing and imaging with THz waves is an active area of modern research in optical science and technology. There have been a number of studies for enhancing THz sensing technologies. In this paper, we review our recent development of THz plasmonic structures and carbon-based THz imagers. The plasmonic structures have strong possibilities of largely increasing detector sensitivity because of their outstanding properties of high transmission enhancement at a subwavelength aperture and local field concentration. We introduce novel plasmonic structures and their performance, including a Si-immersed bull’s-eye antenna and multi-frequency bull’s-eye antennas. The latter part of this paper explains carbon-based THz detectors and their applications in omni-directional flexible imaging. The use of carbon nanotube films has led to a room-temperature, flexible THz detector and has facilitated the visualization of samples with three-dimensional curvatures. The techniques described in this paper can be used effectively for THz sensing and imaging on a micro- and nano-scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call