Abstract

In this paper, the characteristics of a novel terahertz plasmonic microcavity consisting of a circular hole and a coaxial (metallic) cylindrical core machined on a planar metal surface is theoretically investigated. It is shown that such a structure can sustain plasmonic modes, whose resonant wavelengths are much larger than the hole diameter and fields tightly localized within the cavity. For this cavity, both high quality factor and ultrasmall mode volume can be achieved in the terahertz range. As this type of microcavity is particularly compatible with planar technology, it has promising applications in the miniaturization and integration of terahertz optical components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.