Abstract

Characterizing subcells in two-terminal multi-junction (M-J) solar cells is challenging due to the lack of direct electrical access. This work presents a novel contactless spectral characterization technique for analysing individual subcells. The technique involves probing terahertz (THz) radiation generated by femtosecond laser pulse excitation and varying the exciting wavelength to selectively absorb light in the desired subcell. The registered THz pulse integral is then proportional to the induced photocurrent in that subcell. The THz photocurrent spectroscopy technique is demonstrated on GaAs and AlGaAs single-junction solar cells, as well as on the triple-junction AlGaAs/GaAs/GaAsBi solar cell. The results show that the recently developed GaAsBi-based subcell, with a nominal energy bandgap of 1.0 eV, exhibits improved electron–hole separation efficiency and can enhance energy harvesting by M-J solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.