Abstract
By taking advantage of dielectric metasurfaces and plasmonic nanostructures, a terahertz photoconductive antenna (THz-PCA) is proposed and investigated in detail. The designed dielectric metasurfaces can reduce the optical reflection down to 1.4% and accelerate the switching process (electric conductive to resistive) that broadens the THz spectrum emitted from THz-PCA. Simultaneously, the embedded plasmonic nanostructures can realize 11.2 times enhancement in local electric field without affecting the switching process and the damage threshold of the THz-PCA. Simulated results indicate that the proposed THz-PCA is 70.56 times stronger in THz radiation power than that of the traditional THz-PCA. The significant enhancement ensures the proposed THz-PCA has great prospects in promoting THz technology based on the THz-PCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.