Abstract
Terahertz (THz) spectroscopy is used to measure permittivity (100 GHz-2.5 THz) of ZnO and CuO powders with low fill factor pressed into pellets in a polyethylene binder. We show that porosity (air) of such pressed pellets has a large effect on effective pellet permittivity (~10%) and on the extracted permittivity of the oxide constituent (~150%). We explore a two-step analysis based on sequential application of different effective medium models, first to account for the air, and subsequently to extract the oxide's dielectric properties. We show that the combination of Vegard's law and the Maxwell-Garnett model is the best combination to account, respectively, for the air and the oxide powders. In this regard, the capacity that this approach has to adapt to each phase's physical characteristics by using multiple EMMs is an advantage. The resulting oxide permittivities are significantly larger than previously reported for such pellets as a consequence of the porosity. We find for the real relative permittivities of CuO and ZnO ~12.1 and ~8.9, respectively, in the THz range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Terahertz Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.