Abstract

Quantum cascade lasers (QCLs) constitute an intriguing opportunity for the generation of on-chip optical dissipative Kerr solitons (DKSs). Originally demonstrated in passive microresonators, DKSs were recently observed in mid-infrared ring QCL paving the way for their achievement even at longer wavelengths. To this end, we realized defect-free terahertz ring QCLs featuring anomalous dispersion leveraging on a technological platform based on waveguide planarization. A concentric coupled waveguide approach is implemented for dispersion compensation, while a passive broadband bullseye antenna improves the device power extraction and far field. Comb spectra featuring sech2 envelopes are presented for free-running operation. The presence of solitons is further supported by observing the highly hysteretic behavior, measuring the phase difference between the modes, and reconstructing the intensity time profile highlighting the presence of self-starting 12-picosecond-long pulses. These observations are in very good agreement with our numeric simulations based on a Complex Ginzburg-Landau Equation (CGLE).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call