Abstract

Abstract Terahertz (THz) waves are a highly sensitive probe of free carrier concentrations in semiconducting materials. However, most experiments operate in the far-field, which precludes the observation of nanoscale features that affect the material response. Here, we demonstrate the use of nanoscale THz plasmon polaritons as an indicator of surface quality in prototypical quantum devices properties. Using THz near-field hyperspectral measurements, we observe polaritonic features in doped silicon near a metal-semiconductor interface. The presence of the THz surface plasmon polariton indicates the existence of a thin film doped layer on the device. Using a multilayer extraction procedure utilising vector calibration, we quantitatively probe the doped surface layer and determine its thickness and complex permittivity. The recovered multilayer characteristics match the dielectric conditions necessary to support the THz surface plasmon polariton. Applying these findings to superconducting resonators, we show that etching of this doped layer leads to an increase of the quality factor as determined by cryogenic measurements. This study demonstrates that THz scattering-type scanning near-field optical microscopy (s-SNOM) is a promising diagnostic tool for characterization of surface dielectric properties of quantum devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.