Abstract

The osmate pyrochlore Cd2Os2O7 supports an antiferromagnet insulator ground state with an all-in/all-out (AIAO) spin ordering at low temperature. Above 225 K, Cd2Os2O7 becomes a paramagnetic metal whereas the mechanism of this metal-to-insulator transition (MIT) remains elusive. In this letter, we use cryogenic near-field technique operating at terahertz frequencies to study the evolution of low-energy response across the MIT. We observed a systematic variation of the magnitude of nano-THz signal across the transition, consistent with the trend in the direct-current conductivity. Conducting domain walls that dominate the nano-scale landscape of the conductivity of a closely related AIAO system Nd2Ir2O7 are not apparent in Cd2Os2O7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.