Abstract

With the rapid growth in demand for high-speed wireless communication, terahertz (THz) has become one of the most promising techniques. Both atmospheric turbulence and pointing errors are important factors in degrading the performance of THz propagation. We study the performance of a multiple-input/multiple-output (MIMO) system in the THz band under the combined influences noted above. Especially, we take the impact on amplitude and phase caused by turbulence into consideration. We adopt the Padé approximation to analyze the probability density function of the channel coefficient in equal gain combining and derive the bit error rate by the Meijer-G function. The curve-fitting results of theoretical analysis are in good agreement with the actual measurements in the THz band. Therefore, it can be deduced that the exponentiated Weibull model can also be applied in the THz band. Then, we verify the theoretical results by Monte Carlo simulation. We find that turbulence is a more significant cause, which deteriorates communication performance in a larger scale of the MIMO system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.