Abstract

A uniform illumination over a screen is crucial for terahertz imaging. As such, conversion from a Gaussian beam to a flattop beam becomes necessary. Most of the current beam conversion techniques rely on bulky multi-lens systems for collimated input and operate in the far-field. We present a single metasurface lens to efficiently convert a quasi-Gaussian beam from the near-field region of a WR-3.4 horn antenna to a flattop beam. The design process is divided into three sections to minimize simulation time, and the conventional Gerchberg-Saxton (GS) algorithm is supplemented with the Kirchhoff-Fresnel diffraction equation. Experimental validation confirms that a flattop beam with an efficiency of 80% has been achieved at 275 GHz. Such high-efficiency conversion is desirable for practical terahertz systems and the design approach can be generally used for beam shaping in the near-field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call