Abstract

We present a comprehensive investigation of a continuously tunable metamaterial perfect absorber operating at terahertz frequencies. In particular, we investigate a three-layer absorber structure consisting of a layer of split ring resonators and a metallic ground plane, with a central layer consisting of a mechanically tunable air-spaced layer. The absorber was characterized using terahertz time-domain spectroscopy in reflection (at normal incidence) as a function of spacer thickness from 0 to 1000 μm. Our experimental measurements reveal the detailed evolution of the absorption bands as a function of spacing, in excellent agreement with analysis using interference theory and simulation. Our Fabry-Pérot-like structure provides an avenue for achieving massive tunability in metamaterial absorber devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.