Abstract

Using synchronized near-infrared (NIR) and terahertz (THz) lasers, we have performed picosecond time-resolved THz spectroscopy of transient carriers in semiconductors. Specifically, we measured the temporal evolution of THz transmission and reflectivity after NIR excitation. We systematically investigated transient carrier relaxation in GaAs and InSb with varying NIR intensities and magnetic fields. Using this information, we were able to determine the evolution of the THz absorption to study the dynamics of photocreated carriers. We developed a theory based on a Drude conductivity with time-dependent density and density-dependent scattering lifetime, which reproduced the observed plasma dynamics. Detailed comparison between experimental and theoretical results revealed a linear dependence of the scattering frequency on density, which suggests that electron–electron scattering is the dominant scattering mechanism for determining the scattering time. In InSb, plasma dynamics was dramatically modified by the application of a magnetic field, showing rich magnetoreflection spectra, while GaAs did not show any significant magnetic field dependence. We attribute this to the small effective masses of the carriers in InSb compared to GaAs, which made the plasma, cyclotron, and photon energies all comparable in the density, magnetic field, and wavelength ranges of the current study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.