Abstract

"Quantum posts" are roughly cylindrical semiconductor nanostructures that are embedded in an energetically shallower "matrix" quantum well of comparable thickness. We report measurements of voltage-controlled charging and terahertz absorption of 30 nm thick InGaAs quantum wells and posts. Under flat-band (zero-electric field) conditions, the quantum posts each contain approximately six electrons, and an additional ~2.4 × 10(11) cm(-2) electrons populate the quantum well matrix. In this regime, absorption spectra show peaks at 3.5 and 4.8 THz (14 and 19 meV) whose relative amplitude depends strongly on temperature. These peaks are assigned to intersubband transitions of electrons in the quantum well matrix. A third, broader feature has a temperature-independent amplitude and is assigned to an absorption involving quantum posts. Eight-band k·p calculations incorporating the effects of strain and Coulomb repulsion predict that the electrons in the posts strongly repel the electrons in the quantum well matrix, "perforating" the electron gas. The strongest calculated transition, which has a frequency close to the center of the quantum post related absorption at 5 THz (20 meV), is an ionizing transition from a filled state to a quasi-bound state that can easily scatter to empty states in the quantum well matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.