Abstract

We investigate high field and ballistic carrier transport in a 1.55 μm photomixing device based on pin-diodes by time resolved terahertz (THz) spectroscopy. The device consists of 3 stacked In(Al)GaAs pin diodes (n-i-pn-i-p superlattice) attached to a broadband logarithmic-periodic antenna. Each pin diode is optimized for exhibiting ballistic transport and a reduced transit time roll-off. Ballistic transport signatures could be confirmed directly in these experiments. The data are compared with results from continuous-wave experiments and from simulations both supporting our theoretical expectations. It is demonstrated that n-i-pn-i-p superlattice photomixers are also efficient THz emitters under pulsed operation, showing a maximum THz field strength of ∼0.5 V cm–1 (peak to peak) at 30 mW average optical power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call