Abstract

In this paper, we study terahertz generation through optical rectification in reflection at normal incidence in a dielectric nonlinear crystal. We first analyze, with a nonlinear optical model, the sample parameters (thickness, absorption at both laser and terahertz wavelengths, etc.) for which a terahertz optical rectification reflection scheme is preferable to the common transmission scheme. Then, we report our experimental observations of a reflected terahertz signal generated at the surface of a ZnTe crystal. The reflected terahertz signal shares all the characteristics of a signal generated in transmission but is not limited by absorption losses in the crystal, thereby providing a broader bandwidth. At high pump laser power, the signal exhibits saturation, which is caused by the decrease of the nonlinear susceptibility due to photocarriers generated by two-photon absorption. This reflection scheme could be of great importance for terahertz microscopy of opaque materials like, e.g., humid samples or samples exhibiting strong absorption bands or to study samples for which the transmitted signal cannot be recorded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.