Abstract

In this paper, we propose an electrically driven optically excited laser structure for terahertz (THz) generation in quantum cascade lasers (QCLs) through frequency down-conversion optical nonlinearity. In our distinct design, both the pump and THz radiations are generated simultaneously by optical and electronic intersubband transitions (ISTs) between the quantized states within the conduction band of the same active region of a QCL. The modeling of laser bandstructure is achieved using a self-consistent solution of Schrödinger–Poisson equations, and the detailed analysis of electronic transport of the proposed structure is performed using the density matrix approach and energy-density balance equation that self-consistently consider the optical, electrical and thermal interactions in the structure. Additionally, the waveguide loss for the THz optical mode is considered using the bulk Drude model. Using a stationary solution of the density matrix equations, an expression for the THz intensity gain is derived as a function of pump field intensity, carrier distributions and quantum coherence contributions. Using the presented model, we analyze the steady-state and transient characteristics of the device for two different heatsink temperatures, 220 and 300 K. Simulation results show that the proposed structure has a potential to generate room-temperature THz radiation in QCLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call