Abstract

Using a canonical pump-probe experimental technique, we studied the terahertz (THz) waves generation and detection via optical rectification and mixing in Czochralski-grown periodically poled Mg:Y:LiNbO3 (PPLN) crystals. THz waves with frequencies at 1.37 THz and 0.68 THz as well as 1.8 THz were obtained for PPLN with nonlinear grating periods of 0.03 and 0.06 mm, respectively. A general theoretical model was developed by considering the dispersion and damping of low frequency phonon-polariton mode. Our results show that THz waves are generated in forward and backward directions via pumping pulse rectification. The generated THz waves depend on the spectral shape of the laser pulses, quasi-phase mismatches and dispersion characteristics of a crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.