Abstract

A far-infrared laser concept based on intersubband transitions of holes in p-type periodically delta-doped semiconductor films is studied using numerical Monte Carlo simulation of hot-hole dynamics. The considered device consists of monocrystalline pure Ge layers periodically interleaved with delta-doped layers and operates with vertical hole transport in the presence of an in-plane magnetic field. Population inversion on intersubband transitions arises due to light-hole accumulation in E⊥B fields, as in the bulk p-Ge laser. However, the considered structure achieves spatial separation of hole accumulation regions from the doped layers, which reduces ionized-impurity and carrier-carrier scattering for the majority of light holes. This allows a remarkable increase of the gain in comparison with bulk p-Ge lasers. Population inversion and gain sufficient for laser operation are expected up to 77K. Test structures grown by chemical-vapor deposition demonstrate feasibility of producing the device with sufficient active thickness to allow quasioptical electrodynamic cavity solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.