Abstract

Terahertz (THz) fundamental "building blocks" equivalent to those used in multi-functional electronic circuits are very helpful for actual applications in THz data-processing technology and communication. Here, we theoretically and experimentally demonstrate a THz temporal differentiator based on an on-chip high-quality (Q) factor resonator. The resonator is made of low-loss high-resistivity silicon material in a monolithic, integrated platform, which is carefully designed to operate near the critical coupling region. The experiment demonstrates that the device can perform the first-order time derivative of the input signal electric field complex envelope at 214.72 GHz. Our investigation provides an effective approach for terahertz pulse re-shaping and real-time differential computing units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call