Abstract

We analytically investigated the feasibility of multiplier operation in the terahertz range for our original plasmon resonant photomixer. The photomixer features two unique structures (doubly interdigitated gate gratings and a vertical cavity) for higher radiation efficiencies. Its total field emission properties are the result of a combination of plasmon excitation dynamics and electromagnetic field dynamics. The plasmon excitation formulated by the hydrodynamic equations exhibits fundamental and harmonic resonances whose intensities monotonically decrease with the number of harmonics due to the dispersive plasma damping factors. The electromagnetic dynamics, on the other hand, formulated by the Maxwell's equations, reflect material- and structure-dependent device parameters; the grating-bi-coupled plasmonic cavity together with the vertical cavity structures produce nonlinear field emission properties. This results in extraordinary field enhancement at distinct frequencies inconsistent with the plasmon resonances. The frequency-dependent FDTD (finite difference time domain method) Maxwell's simulation revealed that the field emission peak frequency shifted upward apart from the fundamental mode of plasmon resonant frequency and approached to its second harmonic frequency with increasing the electron density in the plasmon cavity. Calculated total field emission spectra indicated that highly dense 2D-plasmon conditions enable frequency-doubler operation in the terahertz range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.