Abstract
Improved control over the electromagnetic properties of metal nanostructures is indispensable for the development of next-generation integrated nanocircuits and plasmonic devices. The use of terahertz (THz)-field-induced nonlinearity is a promising approach to controlling local electromagnetic properties. Here, we demonstrate how intense THz electric fields can be used to modulate electron delocalization in percolated gold (Au) nanostructures on a picosecond time scale. We prepared both isolated and percolated Au nanostructures deposited on high resistivity Si(100) substrates. With increasing the applied THz electric fields, large opacity in the THz transmission spectra takes place in the percolated nanostructures; the maximum THz-field-induced transmittance difference, 50% more, is reached just above the percolation threshold thickness. Fitting the experimental data to a Drude-Smith model, we found furthermore that the localization parameter and the damping constant strongly depend on the applied THz-field strength. These results show that ultrafast nonlinear electron delocalization proceeds via strong electric field of THz pulses; the intense THz electric field modulates the backscattering rate of localized electrons and induces electron tunneling between Au nanostructures across the narrow insulating bridges without any material breakdown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.