Abstract

Collinear phase-matched optical rectification is studied in ZnGeP$_{2}$ pumped with near-infrared light. The pump-intensity dependence is presented for three crystal lengths (0.3, 1.0 and 3.0 mm) to determine the effects of linear optical absorption, nonlinear optical absorption and terahertz free-carrier absorption on the generation. Critical parameters such as the coherence length (for velocity matching), dispersion length (for linear pulse broadening) and nonlinear length (for self-phase modulation) are determined for this material. These parameters provide insight into the upper limit of pulse intensity and crystal length required to generate intense terahertz pulse without detriment to the pulse shape. It is found that for 1-mm thick ZnGeP$_{2}$(012), pumped at 1.28 micron with intensity of ~15 GW/cm2 will produce intense undistorted pulses, whereas longer crystals or larger intensities modify the pulse shape to varying degrees. Moreover, phase-matching dispersion maps are presented for the terahertz generation over a large tuning range (1.1-2.4 micron) in longer (3 mm) crystal, demonstrating the phase-matching bandwidth and phase mismatch that leads to fringing associated with multi-pulse interference. All observed results are simulated numerically showing good qualitative agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.