Abstract

We critically revise the theory of terahertz emission from a plasma filament induced in a gas media by one or two focusd femtosecond laser pulses. We distinguish a radiation pressure force (RPF) from a ponderomotive force (PF), discuss conditions for one of these forces to be the dominating contribution to the terahertz emission, and also show that the angular distribution of the emitted power critically depends on which of the two forces dominates in a particular experiment. We show that the experimentally observed periodic dependence of the emitted terahertz power on the gas pressure reveals the dominating role of the RPF over the PF, whereas the angular diagram of the emission allows us to determine the predominant direction of the force. We also emphasize that the terahertz emission originated by a transient photocurrent exhibits a different dependency from the phase difference between the first and the second harmonics of the optic laser field, which generally enables the experimental detection of the prevailing mechanism of the terahertz emission from the plasma filament.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call