Abstract

We have designed and fabricated a dual-band resonator in the terahertz frequency range on high-resistivity silicon. The device is designed to show resonances at 2.6 and 4.3 THz using the finite-difference time-domain modeling method. The characteristics of the fabricated device have been examined by using a Fourier-transform IR spectrometer. Measured results are in excellent agreement with the simulated data, showing two polarization-independent resonant peaks observed at 2.60 and 4.37 THz, respectively. The first resonance has a bandwidth of 0.56 THz, while the second one has a bandwidth of 0.70 THz. These dual-band resonant devices can be used for various applications such as dual-band spectral imaging and multiband biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call