Abstract

Optical properties of colloidal semiconductor quantum dots (QDs), arising from quantum mechanical confinement of charge, present a versatile testbed for the study of how high electric fields affect the electronic structure of nanostructured solids. Studies of quasi-DC electric field modulation of QD properties have been limited by electrostatic breakdown processes under high externally applied electric fields, which have restricted the range of modulation of QD properties. In contrast, here we drive CdSe-CdS core-shell QD films with high-field THz-frequency electromagnetic pulses whose duration is only a few picoseconds. Surprisingly, in response to the THz excitation, we observe QD luminescence even in the absence of an external charge source. Our experiments show that QD luminescence is associated with a remarkably high and rapid modulation of the QD bandgap, which changes by more than 0.5 eV (corresponding to 25% of the unperturbed bandgap energy). We show that these colossal energy shifts can be explained by the quantum confined Stark effect even though we are far outside the regime of small field-induced shifts in electronic energy levels. Our results demonstrate a route to extreme modulation of material properties and to a compact, high-bandwidth THz detector that operates at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.