Abstract

A new calorimetric absolute power meter has been developed for THz radiation. This broad band THz power meter measures average power at ambient temperature and pressure, does not use a window, and is insensitive to polarization and time structure of THz radiation. The operation of the power meter is based on the calorimetric method: in order to determine the power of a beam of THz radiation, the beam is used to illuminate a highly absorbing surface with known BRDF characteristics until a stable temperature is reached. The power in the incident beam can then be determined by measuring the electric power needed to cause the sample temperature rise. The new power meter was used with laser calorimetry to measure the absorptivity, and thus the emissivity, of aluminum-coated silicon carbide mirror samples produced during the coating qualification run of the Herschel Space Observatory telescope to be launched by the European Space Agency in 2007. The samples were measured at 77 Kelvin to simulate the operating temperature of the telescope in its planned orbit around the second Lagrangian point, L2, of the Earth-Sun system. The absorptivity of both clean and dust-contaminated samples was measured at 70, 118, 184 and 496 µm and found to be in the range 0.2 – 0.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.