Abstract

A switchable multi-function terahertz metasurface employing phase transition material vanadium dioxide (VO2) is presented and investigated. By varying the temperature, the hybrid structure can switch between transmission, absorption, and reflection modes in broadband ranges. When the temperature is below 340 K and VO2 is in the insulating state, perfect polarization conversion is demonstrated. Efficient asymmetric transmission (AT) exceeding 0.7 is simultaneously achieved with an ultra-wide bandwidth of 3.6THz. When VO2 is in the metal phase, it shows different modulation characteristics for x and y-polarized waves. The structure can absorb over 90% of y-polarized waves from 3.56 THz to 7.2 THz (bandwidth, 3.64 THz), while 85% of x-polarized waves are reflected from 1 THz to 9 THz (bandwidth, 8 THz). Compared with other related published works, the designed structure makes significant progress in integrated functionalities, operating bandwidth, and working efficiency. It shows great potential for use in terahertz dynamic control and multifunctional integrated systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.