Abstract

Bulk Dirac semimetal (BDS) has emerged as a "3D graphene" material for the development of optical devices in the past few years. In this study, a BDS-based tunable highly sensitive terahertz (THz) biosensor is proposed by using a Dirac semimetal/Bragg reflector multilayer structure. The high sensitivity of the biosensor originates from the sharp Fano resonance peak caused by coupling the Optical Tamm State (OTS) mode and defect mode. Besides, the sensitivity of the proposed structure is sensitive to the Fermi energy of Dirac semimetal and the refractive index of the sensing medium. The maximum sensitivity of 1022°/RIU is obtained by selecting structural and material parameter appropriately, which has certain competitiveness compared to conventional surface plasmon resonance (SPR) sensors. From the standpoint of the fabrication facility and integration, we judged that the BDS-based layered structure has the potential application in biosensor field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.