Abstract
This paper presents a terahertz beamforming network based on a nonlocal lens with a 2D beam-scanning demonstration through leaky-wave antennas. The proposed design methodology is novel, to the best of our knowledge, in the aspect of using unconventional optimization parameters to significantly reduce the phase error associated with this class of beamformers. In this approach, a nonuniform contour defined by Fourier series expansion is used as a new optimization parameter to significantly decrease the phase error over a larger scan-angle than that in the previous works. The proposed system is a good candidate for industrial and security applications such as automotive radar sensors and electromagnetic THz imaging, thanks to its extensive 2D scanning range: -68∘ to 0° in the elevation plane and -45∘ to +45∘ in the azimuth plane over the frequency range of 140-180 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.