Abstract
Terahertz (THz) radiation is of great interest for a variety of applications, e.g., particle accelerations, spectroscopy investigations of quantum systems, and high-field study of materials. One of the most common laser-based processes to produce THz pulses is optical rectification, which transduces an infrared pump laser to the THz domain (0.1-20 THz). In this work, we propose and theoretically describe a method to characterize the amplitude and phase of the electric field of the pump laser pulse relying on THz generation and detection. We demonstrate with a numerical example how THz radiation can be used as diagnostics to characterize laser pulses with temporal length at the femtosecond level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.