Abstract

High-frequency dielectric studies of Bi0.85Nd0.15FeO3 ceramics performed betweeen 100 and 900 K reveal hardening of most polar phonons on cooling below antiferroelectric phase transition, which occurs near 600 K. Moreover, a strong THz dielectric relaxation is seen in paraelectric phase. Its relaxation frequency softens on cooling towards TC ≈ 600 K, its dielectric strength simultaneously decreases, and finally the relaxation disappears from the spectra below 450 K. Both phonon and dielectric relaxation behavior are responsible for a decrease in the dielectric permittivity at the antiferroelectric phase transition. Origin of unusual strong THz dielectric relaxation in paraelectric phase is discussed. Bi0.85Nd0.15FeO3 structure lies on the phase boundary between polar rhombohedral and non-polar orthorhombic phase and owing to this, the polarization rotation and polarization extension can enhance the piezoelectric response of this system. Similarities and discrepancies with lead-based piezoelectric perovskites, exhibiting morphotrophic phase boundary between two ferroelectric phases, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.