Abstract
The acoustic phonon confinement in a free-standing quantum well (FSQW) results in an acoustic phonon energy quantization. Typical quantization energies are in the terahertz frequency range. Free electrons may absorb electromagnetic waves in this frequency range if they emit or absorb acoustic phonons. Therefore, the terahertz absorption reveals the characteristic features of the acoustic phonon spectrum in free-standing structures. We have calculated the absorption coefficient of an electromagnetic wave by free electrons in a FSQW in the terahertz frequency range. We took into account a time dependent electric field, an exact form of the acoustic phonon spectrum and eigenmodes, and electron interactions with confined acoustic phonons through the deformation potential. We demonstrate numerical results for GaAs FSQW of width 100 Ć at low lattice temperatures in the frequency range 0.1-1 THz. The absorption coefficient exhibits several structures at frequencies corresponding to the lowest acoustic phonon modes. These features occur due to absorption of photons by electrons, which is accompanied by the emission of corresponding acoustic phonons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.