Abstract

The profile of tephra concentration along a volcanic plume (i.e., the tephra segregation profile) is an important source parameter for the simulation of tephra transport and deposition and thus for the tephra sedimentation load. The most commonly-used approach is to treat an eruption as a single event (i.e., with a time-averaged mass eruption rate; MER). In this case, it is common to use pre-determined profiles that feature most of the tephra segregate at the top of the plume. However, case studies based on observations have revealed that large concentration maxima also appear at the lower part of the plume. To investigate this discrepancy, the impact of plume height on the temporal variations in the MER is examined. To this end, we use the tephra transport and dispersion model Tephra4D with MER estimates obtained from geophysical monitoring and maximum plume height observations to calculate the spatial distribution of the tephra deposit load for 39 eruptive events that consisted of explosions and quasi-steady particle emission from the Sakurajima volcano, Japan. A comparison of the model results with observations from a disdrometer network revealed that for both kinds of activity, maxima in tephra segregation can occur at heights below the reported plume height. The tephra segregation profiles of Vulcanian eruptions at Sakurajima volcano are consistent with most of the modeling studies giving profiles that feature most of the tephra segregating at the top of the plume if the temporal variation of the MER is taken into consideration to properly represent the total series of eruptive events in a sequence. This highlights that even though the activity at Sakurajima volcano is commonly characterized simply as Vulcanian eruptions, in addition to the primary plume developed due to the initial instantaneous release caused by the explosion, the subsequent continuous plume that can accompany the eruption plays an important role in particle emission. Calculations could not reproduce the simultaneous deposition of particles with a wide range of settling velocities in observations, suggesting the importance of volcanic ash fingers caused by gravitational instability in tephra transport simulations.Graphical

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call