Abstract
The quest for a consistent theory for quantum gravity is one of the most challenging problems in theoretical high-energy physics. An often-used approach is to describe the gravitational degrees of freedom by the metric tensor or related variables, and finding a way to quantise this. In the canonical tensor model, the gravitational degrees of freedom are encoded in a tensorial quantity $P_{abc}$, and this quantity is subsequently quantised. This makes the quantisation much more straightforward mathematically, but the interpretation of this tensor as a spacetime is less evident. In this work we take a first step towards fully understanding the relationship to spacetime. By considering $P_{abc}$ as the generator of an algebra of functions, we first describe how we can recover the topology and the measure of a compact Riemannian manifold. Using the tensor rank decomposition, we then generalise this principle in order to have a well-defined notion of the topology and geometry for a large class of tensors $P_{abc}$. We provide some examples of the emergence of a topology and measure of both exact and perturbed Riemannian manifolds, and of a purely algebraically-defined space called the semi-local circle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.