Abstract
Graph-based multimedia data clustering has attracted much attention due to the impressive clustering performance for arbitrarily shaped multimedia data. However, existing graph-based clustering methods need post-processing to get labels for multimedia data with high computational complexity. Moreover, it is sub-optimal for label learning due to the fact that they exploit the complementary information embedded in data with different types pixel by pixel. To handle these problems, we present a novel label learning model with good interpretability for clustering. To be specific, our model decomposes anchor graph into the products of two matrices with orthogonal non-negative constraint to directly get soft label without any post-processing, which remarkably reduces the computational complexity. To well exploit the complementary information embedded in multimedia data, we introduce tensor Schatten p-norm regularization on the label tensor which is composed of soft labels of multimedia data. The solution can be obtained by iteratively optimizing four decoupled sub-problems, which can be solved more efficiently with good convergence. Experimental results on various datasets demonstrate the efficiency of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.