Abstract

Despite the impressive clustering performance and efficiency in characterizing both the relationship between the data and cluster structure, most existing graph-based multi-view clustering methods still have the following drawbacks. They suffer from the expensive time burden due to both the construction of graphs and eigen-decomposition of Laplacian matrix. Moreover, none of them simultaneously considers the similarity of inter-view and similarity of intra-view. In this article, we propose a variance-based de-correlation anchor selection strategy for bipartite construction. The selected anchors not only cover the whole classes but also characterize the intrinsic structure of data. Following that, we present a tensorized bipartite graph learning for multi-view clustering (TBGL). Specifically, TBGL exploits the similarity of inter-view by minimizing the tensor Schatten p-norm, which well exploits both the spatial structure and complementary information embedded in the bipartite graphs of views. We exploit the similarity of intra-view by using the [Formula: see text]-norm minimization regularization and connectivity constraint on each bipartite graph. So the learned graph not only well encodes discriminative information but also has the exact connected components which directly indicates the clusters of data. Moreover, we solve TBGL by an efficient algorithm which is time-economical and has good convergence. Extensive experimental results demonstrate that TBGL is superior to the state-of-the-art methods. Codes and datasets are available: https://github.com/xdweixia/TBGL-MVC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call