Abstract
The general problem of two-phase transport in phase-field models is analyzed: the flux of a conserved quantity is driven by the gradient of a potential through a medium that consists of domains of two distinct phases which are separated by diffuse interfaces. It is shown that the finite thickness of the interfaces induces two effects that are not present in the analogous sharp-interface problem: a surface excess current and a potential jump at the interfaces. It is shown that both effects can be eliminated simultaneously only if the coefficient of proportionality between flux and potential gradient (mobility) is allowed to become a tensor in the interfaces. This opens the possibility for precise and efficient simulations of transport problems with finite interface thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.