Abstract

Let H be a Hilbert space. In this paper we show among others that, if f, g are continuous on the interval I with 0 <γ ≤ f(t)/g(t)≤ Γ for t ∈ I and if A and B are selfadjoint operators with Sp (A), Sp (B) ⊂ I, then [f1−ν(A) gν (A)] ⊗ [fν(B) g1−ν (B)] ≤ (1 − ν) f (A) ⊗ g (B) + ν g (A) ⊗ f (B) ≤ [(γ + Γ) 2/4γΓ]R [f1−ν(A) gν (A)] ⊗ [fν(B) g1−ν (B)]. The above inequalities also hold for the Hadamard product “ ◦ ” instead of tensorial product “ ⊗ ”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.