Abstract

Dimensionality reduction is an essential task in hyperspectral image processing. How to preserve the original intrinsic structure information and enhance the discriminant ability is still a challenge in this area. Recently, with the advantage of preserving global intrinsic structure information, low-rank representation has been applied to dimensionality reduction and achieved promising performance. By exploiting the submanifold information of the original data set, multimanifold learning is effective in enhancing the discriminant ability of the processed data set. In addition, due to the ability of preserving the spatial neighborhood structure information, the tensor analysis has become a popular technique for hyperspectral image processing. Motivated by the above-mentioned analysis, a novel tensor-based low-rank graph with multimanifold regularization (T-LGMR) for dimensionality reduction of hyperspectral images is proposed in this paper. In the T-LGMR, a low-rank constraint is employed to preserve the global data structure while multimanifold information is utilized to enhance the discriminant ability, and tensor representation is used to preserve the spatial neighborhood information. Finally, dimensionality reduction is achieved in the graph embedding framework. Experimental results on three real hyperspectral data sets demonstrate the superiority of the proposed method over several state-of-the-art approaches.

Highlights

Read more

Summary

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call