Abstract

We consider the numerical solution of the multivariate aggregation population balance equation on a uniform tensor grid. This class of equations is numerically challenging to solve - the computational complexity of “straightforward” algorithms grows exponentially with respect to the number of internal coordinates describing particle properties.Here, we develop algorithms which reduce the storage and computational complexity to almost linear order, O(dn) and O(dnlog⁡(n)), respectively, where d denotes the number of internal coordinates and n the number of pivots per internal coordinate. In particular, we develop fast algorithms in tensor train format to evaluate the multidimensional aggregation integral exploiting fast Fourier transformation for the underlying convolution. A further significant result lies in the conservation of the first 2d moments for our proposed method. Numerical tests confirm the favorable theoretical results concerning computational complexity and conservation of moments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.