Abstract

Recently, the tensor train (TT) rank has received much attention for tensor completion, due to its ability to explore the global low-rankness of tensors. However, existing methods still leave room for improvement, since the low-rankness itself is generally not sufficient to recover the underlying data. Inspired by this, we consider a novel tensor completion model by simultaneously exploiting the global low-rankness and local smoothness of visual data. In particular, we use low-rank matrix factorization to characterize the global TT low-rankness, and framelet and total variation regularization to enhance the local smoothness. We develop an efficient proximal alternating minimization algorithm to solve the proposed new model with guaranteed convergence. Extensive experiments on various data demonstrated that the proposed method outperforms compared methods in terms of visual and quantitative measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.