Abstract

We investigate the anisotropies in the cosmic microwave background in a class of models which possesses a positive cosmic energy density but negative pressure, with a constant equation of state $w=(p/\ensuremath{\rho})<\ensuremath{-}1.$ We calculate the temperature and polarization anisotropy spectra for both scalar and tensor perturbations by modifying the publicly available code CMBFAST. For a constant initial curvature perturbation or tensor normalization, we have calculated the final anisotropy spectra as a function of the dark energy density and equation of state w and of the scalar and tensor spectral indices. This allows us to calculate the dependence of the tensor-to-scalar ratio on w in a model with phantom dark energy, which may be important for interpreting any future detection of long-wavelength gravitational waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.