Abstract

Grothendieck first defined the notion of a "motif" as a way of finding a universal cohomology theory for algebraic varieties. Although this program has not been realized, Voevodsky has constructed a triangulated category of geometric motives over a perfect field, which has many of the properties expected of the derived category of the conjectural abelian category of motives. The construction of the triangulated category of motives has been extended by Cisinski-Deglise to a triangulated category of motives over a base-scheme S. Recently, Bondarko constructed a DG category of motives, whose homotopy category is equivalent to Voevodsky's category of effective geometric motives, assuming resolution of singularities. Soon after, Levine extended this idea to construct a DG category whose homotopy category is equivalent to the full subcategory of motives over a base-scheme S generated by the motives of smooth projective S-schemes, assuming that S is itself smooth over a perfect field. In both constructions, the tensor structure requires coefficients. In my thesis, I show how to provide a tensor structure on the homotopy category mentioned above, when S is semilocal and essentially smooth over a field of characteristic zero. This is done by defining a pseudo-tensor structure on the DG category of motives constructed by Levine, which induces a tensor structure on its homotopy category.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.