Abstract
We review the basic ideas of the tensor renormalization group method and show how they can be applied for lattice field theory models involving relativistic fermions and Grassmann variables in arbitrary dimensions. We discuss recent progress for entanglement filtering, loop optimization, bond-weighting techniques and matrix product decompositions for Grassmann tensor networks. The new methods are tested with two-dimensional Wilson-Majorana fermions and multi-flavor Gross-Neveu models. We show that the methods can also be applied to the fermionic Hubbard model in 1+1 and 2+1 dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.