Abstract
In this article, a curious phenomenon in the tensor recovery algorithm is considered: can the same recovered results be obtained when the observation tensors in the algorithm are transposed in different ways? If not, it is reasonable to imagine that some information within the data will be lost for the case of observation tensors under certain transpose operators. To solve this problem, a new tensor rank called weighted tensor average rank (WTAR) is proposed to learn the relationship between different resulting tensors by performing a series of transpose operators on an observation tensor. WTAR is applied to three-order tensor robust principal component analysis (TRPCA) to investigate its effectiveness. Meanwhile, to balance the effectiveness and solvability of the resulting model, a generalized model that involves the convex surrogate and a series of nonconvex surrogates are studied, and the corresponding worst case error bounds of the recovered tensor is given. Besides, a generalized tensor singular value thresholding (GTSVT) method and a generalized optimization algorithm based on GTSVT are proposed to solve the generalized model effectively. The experimental results indicate that the proposed method is effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.