Abstract

There has been continued interest in seeking a theorem describing optimal low-rank approximations to tensors of order 3 or higher that parallels the Eckart-Young theorem for matrices. In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike matrices, tensors of order 3 or higher can fail to have best rank-$r$ approximations. The phenomenon is much more widespread than one might suspect: examples of this failure can be constructed over a wide range of dimensions, orders, and ranks, regardless of the choice of norm (or even Bregman divergence). Moreover, we show that in many instances these counterexamples have positive volume: they cannot be regarded as isolated phenomena. In one extreme case, we exhibit a tensor space in which no rank-3 tensor has an optimal rank-2 approximation. The notable exceptions to this misbehavior are rank-1 tensors and order-2 tensors (i.e., matrices). In a more positive spirit, we propose a natural way of overcoming the ill-posedness of the low-rank approximation problem, by using weak solutions when true solutions do not exist. For this to work, it is necessary to characterize the set of weak solutions, and we do this in the case of rank 2, order 3 (in arbitrary dimensions). In our work we emphasize the importance of closely studying concrete low-dimensional examples as a first step toward more general results. To this end, we present a detailed analysis of equivalence classes of $2 \times 2 \times 2$ tensors, and we develop methods for extending results upward to higher orders and dimensions. Finally, we link our work to existing studies of tensors from an algebraic geometric point of view. The rank of a tensor can in theory be given a semialgebraic description; in other words, it can be determined by a system of polynomial inequalities. We study some of these polynomials in cases of interest to us; in particular, we make extensive use of the hyperdeterminant $\Delta$ on $\mathbb{R}^{2\times 2 \times 2}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.